Discover the most talked about and latest scientific content & concepts.

Concept: Gram-negative bacteria


Classic drug development strategies have failed to meet the urgent clinical needs in treating infections with Gram-negative bacteria. Repurposing drugs can lead to timely availability of new antibiotics, accelerated by existing safety profiles. Glatiramer acetate (GA) is a widely used and safe formulation for treatment of multiple sclerosis. It contains a large diversity of essentially isomeric polypeptides with the cationic and amphiphilic character of many antimicrobial peptides (AMP). Here, we report that GA is antibacterial, targeting Gram-negative organisms with higher activity towards Pseudomonas aeruginosa than the naturally-occurring AMP LL-37 in human plasma. As judged from flow cytometric assays, bacterial killing by GA occurred within minutes. Laboratory strains of Escherichia coli and P. aeruginosa were killed by a process of condensing intracellular contents. Efficient killing by GA was also demonstrated in Acinetobacter baumannii clinical isolates and approximately 50% of clinical isolates of P. aeruginosa from chronic airway infection in CF patients. By contrast, the Gram-positive Staphylococcus aureus cells appeared to be protected from GA by an increased formation of nm-scale particulates. Our data identify GA as an attractive drug repurposing candidate to treat infections with Gram-negative bacteria.

Concepts: Immune system, Bacteria, Microbiology, Antibiotic resistance, Escherichia coli, Pseudomonas aeruginosa, Gram negative bacteria, Gram-negative bacteria


Glycerol monolaurate (GML) is an antimicrobial agent that has potent activity against gram-positive bacteria. This study examines GML antibacterial activity in comparison to lauric acid, in broth cultures compared to biofilm cultures, and against a wide range of gram-positive, gram-negative, and non-gram staining bacteria.

Concepts: Bacteria, Microbiology, Staining, Gram-negative bacteria, Tea tree oil, Gram staining, Gram-positive bacteria, Bacteriology


BACKGROUND: This study evaluated, using in vitro assays, the antibacterial, antioxidant, and tyrosinase-inhibition activities of methanolic extracts from peels of seven commercially grown pomegranate cultivars. METHODS: Antibacterial activity was tested on Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Klebsiella pneumonia) using a microdilution method. Several potential antioxidant activities, including radical-scavenging ability (RSA), ferrous ion chelating (FIC) and ferric ion reducing antioxidant power (FRAP), were evaluated. Tyrosinase enzyme inhibition was investigated against monophenolase (tyrosine) and diphenolase (DOPA), with arbutin and kojic acid as positive controls. Furthermore, phenolic contents including total flavonoid content (TFC), gallotannin content (GTC) and total anthocyanin content (TAC) were determined using colourimetric methods. HPLC-ESI/MSn analysis of phenolic composition of methanolic extracts was also performed. RESULTS: Methanolic peel extracts showed strong broad-spectrum activity against Gram-positive and Gram-negative bacteria, with the minimum inhibitory concentrations (MIC) ranging from 0.2 to 0.78 mg/ml. At the highest concentration tested (1000 mug/ml), radical scavenging activities were significantly higher in Arakta (83.54%), Ganesh (83.56%), and Ruby (83.34%) cultivars (P< 0.05). Dose dependent FIC and FRAP activities were exhibited by all the peel extracts. All extracts also exhibited high inhibition (>50%) against monophenolase and diphenolase activities at the highest screening concentration. The most active peel extract was the Bhagwa cultivar against monophenolase and the Arakta cultivar against diphenolase with IC50 values of 3.66 mug/ml and 15.88 mug/ml, respectively. High amounts of phenolic compounds were found in peel extracts with the highest and lowest total phenolic contents of 295.5 (Ganesh) and 179.3 mg/g dry extract (Molla de Elche), respectively. Catechin, epicatechin, ellagic acid and gallic acid were found in all cultivars, of which ellagic acid was the most abundant comprising of more than 50% of total phenolic compounds detected in each cultivar. CONCLUSIONS: The present study showed that the tested pomegranate peels exhibited strong antibacterial, antioxidant and tyrosinase-inhibition activities. These results suggest that pomegranate fruit peel could be exploited as a potential source of natural antimicrobial and antioxidant agents as well as tyrosinase inhibitors.

Concepts: Bacteria, Microbiology, Escherichia coli, Fruit, Tannin, Gram-negative bacteria, Pomegranate, Ferric


The rise in super bugs causing Ventilator-Associated Pneumonia (VAP) is a major cause of mortality and morbidity despite recent advances in management owing to the looming ‘antibiotic apocalypse’. The aetiology and susceptibility pattern of the VAP isolates varies with patient population, type of intensive care unit (ICU) and is an urgent diagnostic challenge. The present study carried out for a period of one year in a tertiary care hospital, enrolled patients on mechanical ventilation (MV) for ≥48 hrs. Endotracheal aspirates (ETA) from suspected VAP patients were processed by semi quantitative method. Staphylococus aureus, members of Enterobacteriaceae were more common in early onset VAP (EOVAP), while Nonfermenting Gram negative bacilli (NFGNB) were significantly associated with late onset VAP (LOVAP). Most of the isolates were multi drug resistant (MDR) super bugs. With limited treatment options left for this crisis situation like the pre-antibiotic era; it is an alarm for rational antibiotic therapy usage and intensive education programs.

Concepts: Medicine, Pneumonia, Antibiotic resistance, Acute respiratory distress syndrome, Mechanical ventilation, Tertiary referral hospital, Gram-negative bacteria, Ventilator-associated pneumonia


Considering the indigenous utilization of Quercus incana Roxb., the present study deals with the investigation of antioxidant, free radical scavenging activity, total phenolic content, and antimicrobial activity of Q. incana Roxb. In vitro antioxidant activity of the plant fractions were determined by 1,1-diphenyl-2-picrylhydrazyl and nitric oxide scavenging method. Total phenolic contents were determined by gallic acid equivalent and antimicrobial activities were determined by agar well diffusion method. It was observed that Q. incana Roxb. showed significant antibacterial activity against Gram-positive and Gram-negative bacteria. n-Butanol fraction showed maximum activity against Micrococcus leuteus with 19 mm zone of inhibition. n-Butanol fraction of Q. incana Roxb. showed immense antifungal activity against Aspergillus niger (32 mm ± 0.55) and A. flavus (28 mm ± 0.45). Similarly n-butanol fraction showed relatively good antioxidant activity with IC50 value of 55.4 ± 0.21 μg/mL. The NO scavenging activity of ethyl acetate fraction (IC50 = 23.21 ± 0.31 μg/mL) was fairly good compared to other fractions. The current study of Q. incana Roxb. suggests the presences of synergetic action of some biological active compounds that may be present in the leaves of medicinal plant. Further studies are needed to better characterize the important active constituents responsible for the antimicrobial, antioxidant and free radical scavenging activity.

Concepts: Bacteria, Microbiology, Radical, Nitric oxide, Tannin, Gram-negative bacteria, Gallic acid, Gram-positive bacteria


Colonization and infection by multidrug-resistant gram-negative bacilli (MDR GNB) in neonatal intensive care units (NICUs) are increasingly reported.We conducted a 5-year prospective cohort surveillance study in a tertiary NICU of the hospital “Paolo Giaccone,” Palermo, Italy. Our objectives were to describe incidence and trends of MDR GNB colonization and the characteristics of the most prevalent organisms and to identify the risk factors for colonization. Demographic, clinical, and microbiological data were prospectively collected. Active surveillance cultures (ASCs) were obtained weekly. Clusters of colonization by extended spectrum β-lactamase (ESBL) producing Escherichia coli and Klebsiella pneumoniae were analyzed by conventional and molecular epidemiological tools.During the study period, 1152 infants were enrolled in the study. Prevalences of colonization by MDR GNB, ESBL-producing GNB and multiple species/genera averaged, respectively, 28.8%, 11.7%, and 3.7%. Prevalence and incidence density of colonization by MDR GNB and ESBL-producing GNB showed an upward trend through the surveillance period. Rates of ESBL-producing E coli and K pneumoniae colonization showed wide fluctuations peaking over the last 2 years. The only independent variables associated with colonization by MDR GNB and ESBL-producing organisms and multiple colonization were, respectively, the days of NICU stay (odds ratio [OR] 1.041), the days of exposure to ampicillin-sulbactam (OR 1.040), and the days of formula feeding (OR 1.031). Most clusters of E coli and K pneumoniae colonization were associated with different lineages. Ten out of 12 clusters had an outborn infant as their index case.Our study confirms that MDR GNB are an increasing challenge to NICUs. The universal once-a-week approach allowed us to understand the epidemiology of MDR GNB, to timely detect new clones and institute contact precautions, and to assess risk factors. Collection of these data can be an important tool to optimize antimicrobials use and control the emergence and dissemination of resistances in NICU.

Concepts: Epidemiology, Medical statistics, Intensive care medicine, Escherichia coli, Enterobacteriaceae, Prevalence, Gram negative bacteria, Gram-negative bacteria


Cyperus rotundus L. (Cyperaceae) is a medicinal herb traditionally used to treat various clinical conditions at home. In this study, chemical composition of Cyperus rotundus rhizomes essential oil, and in vitro antioxidant, DNA damage protective and cytotoxic activities as well as antibacterial activity against foodborne pathogens were investigated. Results showed that α-cyperone (38.46%), cyperene (12.84%) and α-selinene (11.66%) were the major components of the essential oil. The essential oil had an excellent antioxidant activity, the protective effect against DNA damage, and cytotoxic effects on the human neuroblastoma SH-SY5Y cell, as well as antibacterial activity against several foodborne pathogens. These biological activities were dose-dependent, increasing with higher dosage in a certain concentration range. The antibacterial effects of essential oil were greater against Gram-positive bacteria as compared to Gram-negative bacteria, and the antibacterial effects were significantly influenced by incubation time and concentration. These results may provide biological evidence for the practical application of the C. rotundus rhizomes essential oil in food and pharmaceutical industries.

Concepts: DNA, Gene, Cell, Bacteria, Microbiology, Cyperus rotundus, Gram-negative bacteria, Gram-positive bacteria


With the recent emergence of reports on resistant Gram-negative ‘superbugs’, infections caused by multidrug-resistant (MDR) Gram-negative bacteria have been named as one of the most urgent global health threats due to the lack of effective and biocompatible drugs. Here, we show that a class of antimicrobial agents, termed ‘structurally nanoengineered antimicrobial peptide polymers’ (SNAPPs) exhibit sub-μM activity against all Gram-negative bacteria tested, including ESKAPE and colistin-resistant and MDR (CMDR) pathogens, while demonstrating low toxicity. SNAPPs are highly effective in combating CMDR Acinetobacter baumannii infections in vivo, the first example of a synthetic antimicrobial polymer with CMDR Gram-negative pathogen efficacy. Furthermore, we did not observe any resistance acquisition by A. baumannii (including the CMDR strain) to SNAPPs. Comprehensive analyses using a range of microscopy and (bio)assay techniques revealed that the antimicrobial activity of SNAPPs proceeds via a multimodal mechanism of bacterial cell death by outer membrane destabilization, unregulated ion movement across the cytoplasmic membrane and induction of the apoptotic-like death pathway, possibly accounting for why we did not observe resistance to SNAPPs in CMDR bacteria. Overall, SNAPPs show great promise as low-cost and effective antimicrobial agents and may represent a weapon in combating the growing threat of MDR Gram-negative bacteria.

Concepts: Immune system, Protein, Cell, Bacteria, Microbiology, Antibiotic resistance, Gram-negative bacteria, Acinetobacter baumannii


Insect immune systems can recognize specific pathogens and prime offspring immunity. High specificity of immune priming can be achieved when insect females transfer immune elicitors into developing oocytes. The molecular mechanism behind this transfer has been a mystery. Here, we establish that the egg-yolk protein vitellogenin is the carrier of immune elicitors. Using the honey bee, Apis mellifera, model system, we demonstrate with microscopy and western blotting that vitellogenin binds to bacteria, both Paenibacillus larvae - the gram-positive bacterium causing American foulbrood disease - and to Escherichia coli that represents gram-negative bacteria. Next, we verify that vitellogenin binds to pathogen-associated molecular patterns; lipopolysaccharide, peptidoglycan and zymosan, using surface plasmon resonance. We document that vitellogenin is required for transport of cell-wall pieces of E. coli into eggs by imaging tissue sections. These experiments identify vitellogenin, which is distributed widely in oviparous species, as the carrier of immune-priming signals. This work reveals a molecular explanation for trans-generational immunity in insects and a previously undescribed role for vitellogenin.

Concepts: Immune system, Antibody, Bacteria, Molecular biology, Microbiology, Insect, Escherichia coli, Gram-negative bacteria


Cefiderocol (formerly S-649266) is an investigational siderophore cephalosporin. Iron-depleted cation-adjusted Mueller-Hinton broth (ID-CAMHB) was prepared according to the Clinical and Laboratory Standards Institute (CLSI) protocol and used to perform broth microdilution testing of cefiderocol against a 2014-2015 collection of clinical isolates of gram-negative bacilli from North America (n=4,239) and Europe (n=4,966). The concentration of cefiderocol inhibiting 90% of isolates tested (MIC90) was: 0.5 (North America; n=3,007) and 1 μg/ml (Europe; n=3,080) for all isolates of Enterobacteriaceae; 1 (North America; n=30) and 4 μg/ml (Europe; n=139) for meropenem-non-susceptible (MIC ≥2 μg/ml) isolates of Enterobacteriaceae; 0.5 μg/ml for both North American (n=765) and European (n=765) isolates of Pseudomonas aeruginosa; 0.5 (North America; n=151) and 1 μg/ml (Europe; n=202) for meropenem-non-susceptible (MIC ≥4 μg/ml) isolates of P. aeruginosa; 1 μg/ml for both North American (n=309) and European (n=839) isolates of all Acinetobacter baumannii as well as for both North American (n=173) and European (n=595) isolates of meropenem-non-susceptible A. baumannii; and 0.5 (North America; n=152) and 0.25 μg/ml (Europe; n=276) for isolates of Stenotrophomonas maltophilia MICs to cefiderocol were ≤4 μg/ml for 99.9% (6,078/6,087) of all Enterobacteriaceae, 97.0% (164/169) of meropenem-non-susceptible Enterobacteriaceae, 99.9% (1,529/1,530) of all P. aeruginosa, 100% (353/353) of meropenem-non-susceptible P. aeruginosa, 97.6% (1,120/1,148) of all A. baumannii, 96.9% (744/768) of meropenem-non-susceptible A. baumannii, 100% of isolates of S. maltophilia (428/428) and 93.8% of Burkholderia cepecia (11/12). We conclude that cefiderocol demonstrated potent in vitro activity against a recent collection of clinical isolates of commonly encountered gram-negative bacilli, including carbapenem non-susceptible isolates.

Concepts: United States, Pseudomonas aeruginosa, Pseudomonas, Gram negative bacteria, Pseudomonadales, North America, Gram-negative bacteria, Acinetobacter baumannii